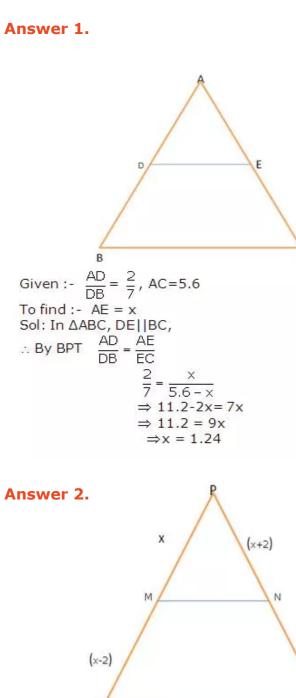
Ex 15.1



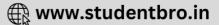
Sol: In $\triangle PQR$, MN||QR, \therefore By BPT $\frac{PM}{MQ} = \frac{PN}{NR}$ $\frac{x}{x-2} = \frac{x+2}{x-2}$ $\Rightarrow x^2 - x = x^2 - 4$ $\Rightarrow -x = -4$ $\Rightarrow x = 4$

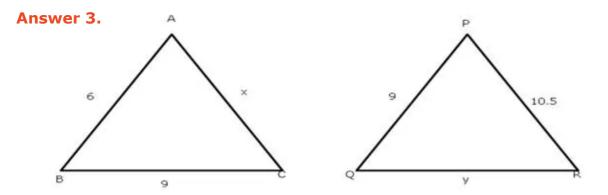
Get More Learning Materials Here :

Q

(x-1)

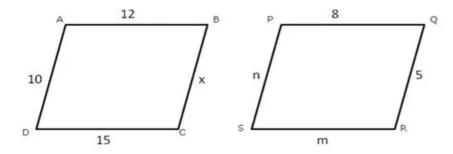
R





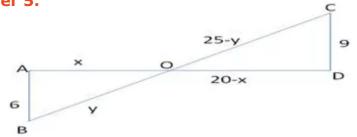
Given: - $\triangle ABC \sim \triangle PQR$ To find: - AC and QR Sol: $\triangle ABC \sim \triangle PQR$ $\therefore \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$ (Similar sides of similar triangles) $\frac{6}{9} = \frac{9}{y} = \frac{x}{10.5}$ $\frac{6}{9} = \frac{9}{y}$, $\frac{6}{9} = \frac{x}{10.5}$ $\Rightarrow 6y = 81$ $\Rightarrow 63 = 9x$ $\Rightarrow y = \frac{81}{6}$ $\Rightarrow x = 7$ $\Rightarrow y = \frac{27}{2}$ $\Rightarrow AC = 7cm$ $\Rightarrow QR = 13.5cm$

Answer 4.

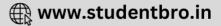


Given: quadrilateral ABCD~quadrilateral PORS To find: x, m and n Sol: quadrilateral ABCD~quadrilateral PORS $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{DC}{SR} = \frac{AD}{SR}$ $\frac{12}{8} = \frac{x}{5} = \frac{15}{m} = \frac{10}{n}$ $\frac{12}{8} = \frac{x}{5}, \frac{12}{8} = \frac{15}{m}, \frac{12}{8} = \frac{10}{n}$ 60 = 8x, 4m = 40... 3n = 20 $x = \frac{60}{8}, m = 10 \text{ cm}, n = \frac{20}{3}$ $x = \frac{15}{2}, m = 10 \text{ cm}, n = 6.66 \text{ ...}$ x = 7.5 cm, m = 10 cm, n = 6.67 cm

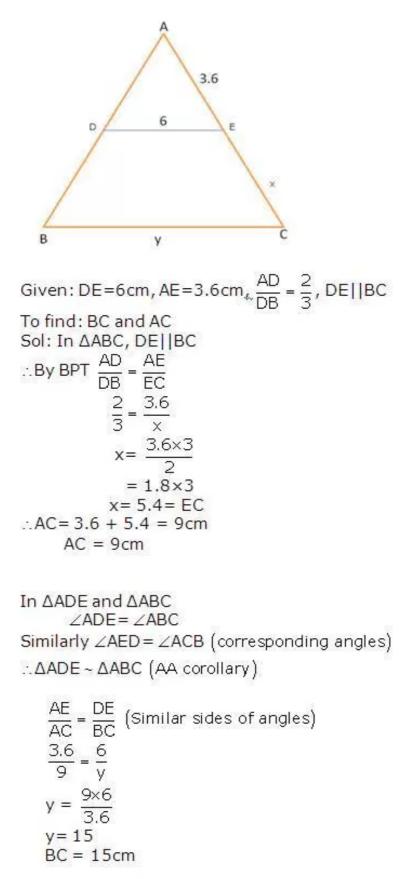
Answer 5.



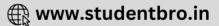
To find: AO, BO, CO,DO In $\triangle AOB$ and $\triangle COD$ $\angle OAB = \angle ODC (90^{\circ}each)$ $\angle AOB = \angle DOC (vertically opposite angles)$ $\therefore \triangle AOB \sim \triangle DOC (AA corollary)$ $\therefore \frac{AO}{DO} = \frac{OB}{OC} = \frac{AB}{DC}$ $\frac{x}{20-x} = \frac{2}{3}, \frac{y}{25-y} = \frac{6}{9}$ $\frac{x}{20-x} = \frac{2}{3}, \frac{y}{25-y} = \frac{2}{3}$ 3x = 40 - 2x, 3y = 50 - 2y 5x = 40, 5y = 50 x = 8, y = 10 AO = 8cm, OB = 10cmOD = 20 - 8 = 12 cm, OC = 25-10 = 15cm

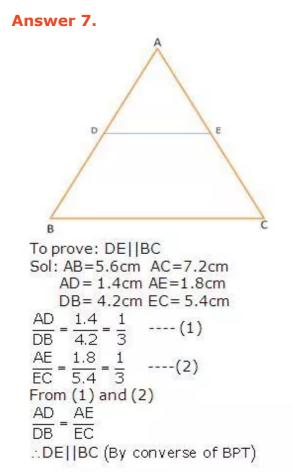


Answer 6.

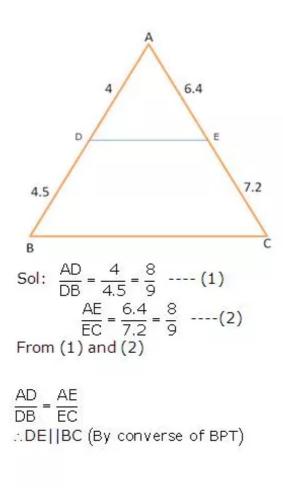


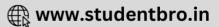
Get More Learning Materials Here :

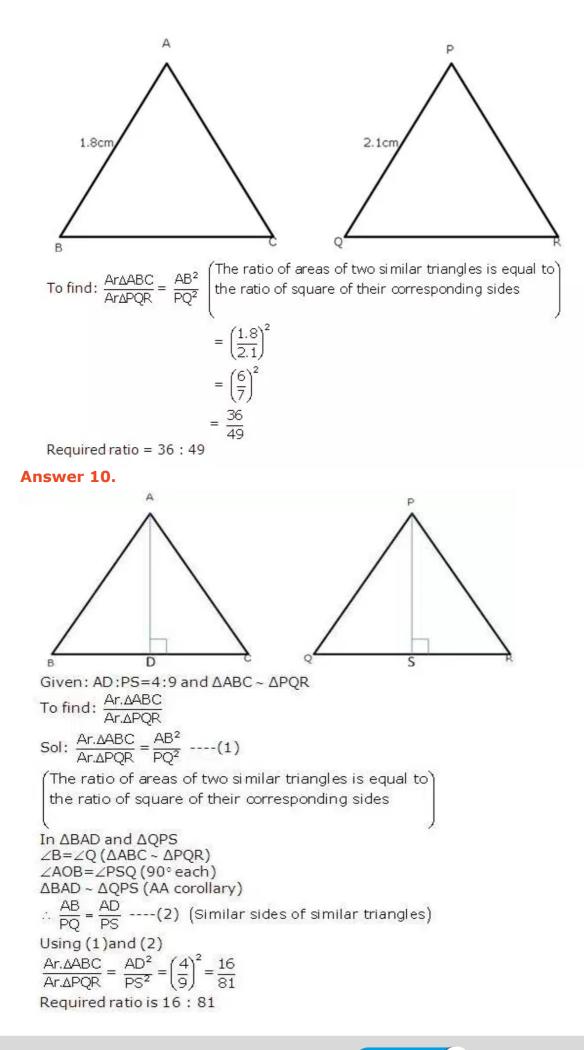




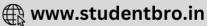
T



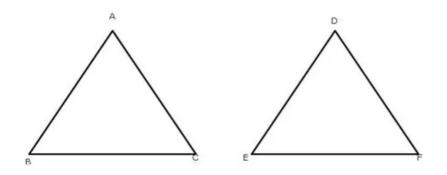




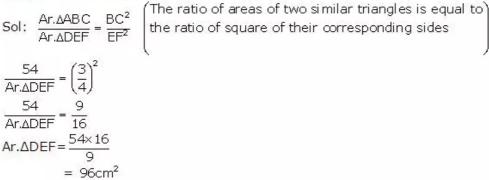
Get More Learning Materials Here :



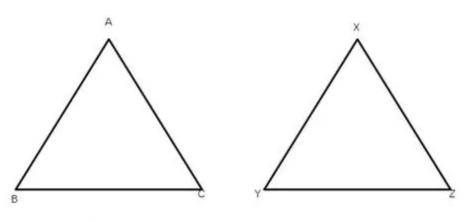
Answer 11.



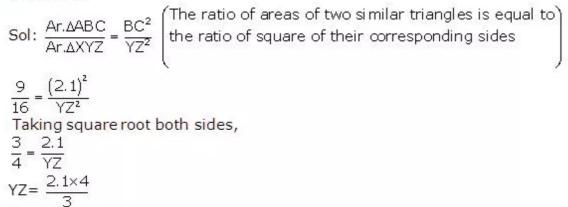
Given: ΔABC ~ΔDEF To find: Ar. of ΔDEF



Answer 12.

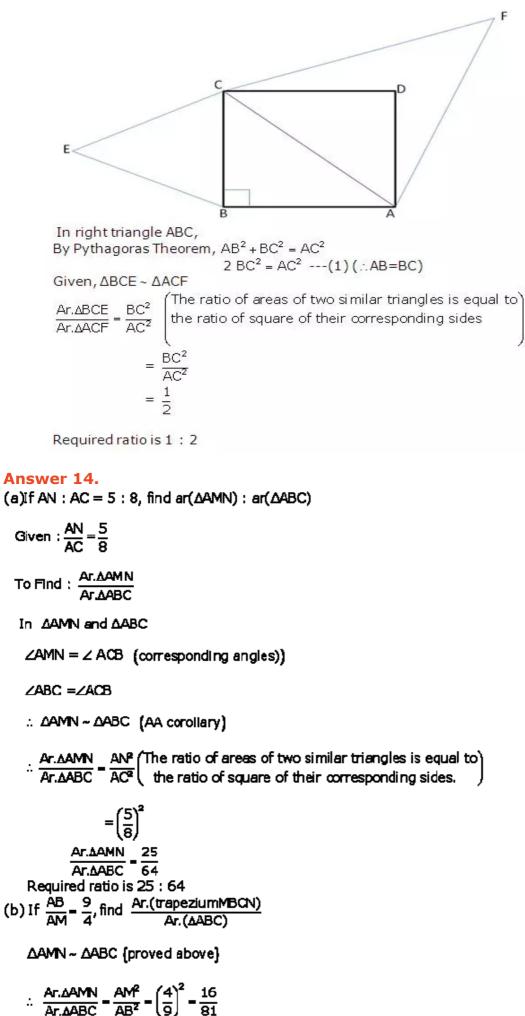


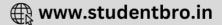
Given: ΔABC ~ ΔXYZ To find: YZ



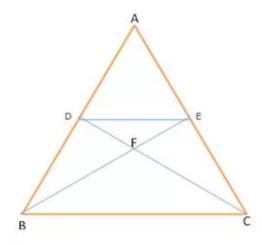
YZ = 2.8 cm

Answer 13.





Answer 15.



Given: $\frac{DE}{BC} = \frac{2}{7}$ To find: (Similar sides of similar triangles) In Δ FDE and Δ FCB \angle FDE = \angle FCB \angle FED = \angle FBC (Alternate interior angles) Δ FDE ~ Δ FCB (AA corollary) $\therefore \frac{Ar.\Delta FDE}{Ar.\Delta FBC} = \frac{DE^2}{BC^2} = \left(\frac{2}{7}\right)^2 = \frac{4}{49} \left(\frac{The ratio of areas of two similar triangles is equal to}{the ratio of square of their corresponding sides}\right)$

Answer 16.

Given: $\frac{PT}{TR} = \frac{5}{3}$, To find : $\frac{Ar.(\Delta MTS)}{Ar.(\Delta MQR)}$ Sol: In ΔPST and ΔPRQ $\angle PST = \angle PQR$ $\angle PTS = \angle PRQ$ (Corresponding angles) $\therefore \Delta PST \sim \Delta PQR$ (AA corollary) $\therefore \frac{PT}{PR} = \frac{ST}{QR} = \frac{5}{8}$ (Similar sides of similar triangles) Now, In ΔMTS and ΔMQR $\angle MTS = \angle MQR$ (Alternate interior angles) $\angle MST = \angle MRQ$ $\therefore \Delta MTS \sim \Delta MQR$ (AA corollary) $\therefore \frac{Ar.(\Delta MTS)}{Ar.(\Delta MQR)} = \frac{TS^2}{QR^2} = \left(\frac{5}{8}\right)^2 = \frac{25}{64}$ i.e. 25 : 64 (The ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides)

Answer 17.

Given: $\frac{KL}{KT} = \frac{9}{5}$ To find: $\frac{Ar.\Delta KLM}{Ar.\Delta KTP}$ Sol: In ΔKLM and ΔKTP $\angle KLM = \angle KTP$ (Given) $\angle LKM = \angle TKP$ (Common) $\Delta KLM \sim \Delta KTP$ (AA corollary) $\therefore \frac{Ar.\Delta KLM}{Ar.\Delta KTP} = \left(\frac{KL}{KT}\right)^2 = \left(\frac{9}{5}\right)^2 = \frac{81}{25}$ (The r

i.e., 81 : 25 $\binom{\text{The ratio of areas of two similar triangles is equal to}}{\text{the ratio of square of their corresponding sides}}$

Answer 18.

In \triangle DEF and \triangle GHF, \angle DEF = \angle GHF (90°each) \angle DFE = \angle GFH (Common) \triangle DEF ~ \triangle GHF (AA corollary) $\therefore \frac{Ar.(VDEF)}{Ar.(VGHF)} = \frac{EF^2}{HF^2} ----(1)$ (The ratio of areas of two similar triangles is equal to the ratio of square of their corresponding sides) In right \triangle DEF, (By Pythagoras theorem) DE² + EF² = DF² EF² = 10² - 8² EF² = 36 EF = 6 From (1), $\frac{Ar.(VDEF)}{Ar.(VGHF)} = \left(\frac{6}{4}\right)^2 = \frac{9}{4}$ i.e., 9 : 4

Ex 15.2

Answer 1.

Scale = 1 : 500 1cm represents 500cm $\frac{500}{100} = 5m$ 1cm represents 5m Length of model = $\frac{50}{5} = 10cm$ Breadth of model = $\frac{40}{5} = 8cm$ Height of model = $\frac{70}{5} = 14cm$

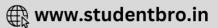
Answer 2.

20cm represents 400m

1cm represents $\frac{400}{20} = 20$ cm Width of model $= \frac{100}{20} = 5$ cm Length of model = 20cm

Surface area of the deck of the model = 5cm \times 20cm

 $= 100 \, \text{cm}^2$



Answer 3.

Scale:- 1 : 500 1cm represents 500cm $= \frac{500}{100} = 5m$ 1cm represents 5m (i) Actual length of ship = 60 × 5m = 300m (ii) 1 cm² represents 5m × 5m = 25m²

Deck area of the ship = $1500000m^2$

Deck area of the model = $\frac{1500000}{25}$ cm² = 60000cm² (iii) 1 cm³ represents 5m × 5m × 5m = 125 m³ Volume of the model = 200 cm³ Volume of the ship = 200 × 125 m³ = 25000 m³

Answer 4.

15cm represents = 30m 1cm represents $\frac{30}{15} = 2m$ 1 cm² represents 2m × 2m = 4 m² Surface area of the model = 150 cm² Actual surface area of aeroplane = 150 × 2 × 2 m² = 600 m² 50 m² is left out for windows Area to be painted = 600 - 50 = 50 m² Cost of painting per m² = Rs. 120 Cost of painting 550 m² = 120 × 550 = Rs. 66000

Answer 5.

1cm on map represents 12500m on land

1 cm represents 12.5km on land

Length of river on map = 54cm

Actual length of the river = 54×12.5

= 675.000km

=675km

Answer 6.

(i) Scale: -1: 200000

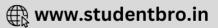
: 1cm represents 200000cm

1cm represents 2km

(ii) 1cm represents 2 km

 $112^2 + 16^2$ represents $2 \times 2 = 4$ km²

(iii)4km² is represented by km² 1km² is represented by $\frac{1}{4}$ cm² 20km² is represented by $\frac{1}{4}$ ×20cm² = 5cm² Area on map that represents the plot of land = 5cm²



Answer 7.

Actual area= 1872km² Area on map represents 117 cm² Let 1cm represents × km ∴ 1 cm² represents × × km²

Actual area =
$$\times \times \times \times 117 \text{ km}^2$$

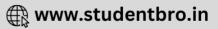
 $1872 = \times^2 \times 117$
 $\times^2 = \frac{1872}{117}$
 $\times^2 = 16$
 $\times = 4$

: 1cm represents 4 km

Length of coastline on map = 44cm

Actual length of coastline = 44×4 km

= 176 km



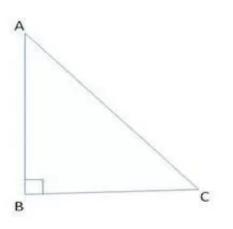
Answer 8.

Scale:- 1:25000

: 1 cm represents 25000cm

$$= \frac{25000}{1000 \times 100} = 2.5 \text{km}$$

∴1cm represents 0.25km



Actual length of AB = 6×0.25

= 1.50 km

Area of
$$\triangle ABC = \frac{1}{2} \times BC \times AB$$
$$= \frac{1}{2} \times 8 \times 6 = 24 \text{ cm}^2$$

1 cm represents 0.25 km

 1 cm^2 represents $0.25 \times 0.25 \text{ km}^2$

The area of plot = $0.25 \times 0.25 \times 24$ km²

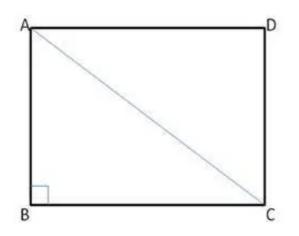
Answer 9.

Scale :- 1 : 25000

1 cm represents 25000 cm

$$=\frac{25000}{1000\times100}=0.25$$
km

1 cm represents 0.25km



$$AC^{2} = AB^{2} + BC^{2}$$

= $12^{2} + 16^{2}$
= $144 + 256$
 $AC^{2} = 400$
 $AC = 20 \text{ cm}$

Actual length of diagonal = 20 ×0.25

1cm represents 0.25km

1cm² represents 0.25 × 0.25km²

The area of the rectangle $ABCD = AB \times BC$

$$= 16 \times 12 = 192 \, \text{cm}^2$$

The area of the plot = $0.25 \times 0.25 \times 192$ km²

= 12km²